Métodos Numéricos en Recursos Hídricos

Solución de Ecuaciones Diferenciales Ordinarias
ODE

- Methods described here are for solving differential equations of the form:

\[\frac{dy}{dt} = f(t, y) \]

- The methods in this chapter are all *one-step* methods and have the general format:

\[y_{i+1} = y_i + \phi h \]

where \(\phi \) is called an *increment function*, and is used to extrapolate from an old value \(y_i \) to a new value \(y_{i+1} \).
Euler’s Method

- The first derivative provides a direct estimate of the slope at \(t_i \):
 \[
 \left. \frac{dy}{dt} \right|_{t_i} = f(t_i, y_i)
 \]
 and the Euler method uses that estimate as the increment function:
 \[
 \phi = f(t_i, y_i)
 \]
 \[
 y_{i+1} = y_i + f(t_i, y_i)h
 \]
Error Analysis for Euler’s Method

• The numerical solution of ODEs involves two types of error:
 – *Truncation errors*, caused by the nature of the techniques employed
 – *Roundoff errors*, caused by the limited numbers of significant digits that can be retained

• The total, or *global truncation error* can be further split into:
 – *local truncation error* that results from an application method in question over a single step, and
 – *propagated truncation error* that results from the approximations produced during previous steps.
Error Analysis for Euler’s Method

• The local truncation error for Euler’s method is $O(h^2)$ and proportional to the derivative of $f(t,y)$ while the global truncation error is $O(h)$.

• This means:
 – The global error can be reduced by decreasing the step size, and
 – Euler’s method will provide error-free predictions if the underlying function is linear.

• Euler’s method is *conditionally stable*, depending on the size of h.
MATLAB Code for Euler’s Method

function [t,y] = eulode(dydt,tspan,y0,h,varargin)
% eulode: Euler ODE solver
% [t,y] = eulode(dydt,tspan,y0,h,p1,p2,...):
% uses Euler's method to integrate an ODE
% input:
% dydt = name of the M-file that evaluates the ODE
% tspan = [ti, tf] where ti and tf = initial and
% final values of independent variable
% y0 = initial value of dependent variable
% h = step size
% p1,p2,... = additional parameters used by dydt
% output:
% t = vector of independent variable
% y = vector of solution for dependent variable

if nargin<4,error('at least 4 input arguments required'),end
 ti = tspan(1); tf = tspan(2);
 if ~(tf>ti),error('upper limit must be greater than lower'),end
 t = (ti:h:tf)'; n = length(t);
% if necessary, add an additional value of t
% so that range goes from t = ti to tf
 if t(n)<tf
 t(n+1) = tf;
 n = n+1;
 end

 y = y0*ones(n,1); % preallocate y to improve efficiency
 for i = 1:n-1 % implement Euler's method
 y(i+1) = y(i) + dydt(t(i),y(i),varargin{:})*(t(i+1)-t(i));
 end
Heun’s Method

- One method to improve Euler’s method is to determine derivatives at the beginning and predicted ending of the interval and average them:

- This process relies on making a prediction of the new value of y, then correcting it based on the slope calculated at that new value.

- This predictor-corrector approach can be iterated to convergence:
Midpoint Method

• Another improvement to Euler’s method is similar to Heun’s method, but predicts the slope at the midpoint of an interval rather than at the end:

• This method has a local truncation error of $O(h^3)$ and global error of $O(h^2)$
Runge-Kutta Methods

• Runge-Kutta (RK) methods achieve the accuracy of a Taylor series approach without requiring the calculation of higher derivatives.

• For RK methods, the increment function ϕ can be generally written as:

$$\phi = a_1k_1 + a_2k_2 + \cdots + a_nk_n$$

where the a’s are constants and the k’s are

$$k_1 = f(t_i, y_i)$$

$$k_2 = f(t_i + p_1h, y_i + q_{11}k_1h)$$

$$k_3 = f(t_i + p_2h, y_i + q_{21}k_1h + q_{22}k_2h)$$

$$\vdots$$

$$k_n = f(t_i + p_{n-1}h, y_i + q_{n-1,1}k_1h + q_{n-1,2}k_2h + \cdots + q_{n-1,n-1}k_{n-1}h)$$

• where the p’s and q’s are constants.
Classical Fourth-Order Runge-Kutta Method

• The most popular RK methods are fourth-order, and the most commonly used form is:

\[y_{i+1} = y_i + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)h \]

where:

\[k_1 = f(t_i, y_i) \]
\[k_2 = f\left(t_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h\right) \]
\[k_3 = f\left(t_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h\right) \]
\[k_4 = f(t_i + h, y_i + k_3h) \]
Systems of Equations

• Many practical problems require the solution of a system of equations:

\[
\frac{dy_1}{dt} = f_1(t, y_1, y_2, \cdots, y_n) \\
\frac{dy_2}{dt} = f_2(t, y_1, y_2, \cdots, y_n) \\
\quad \vdots \\
\frac{dy_n}{dt} = f_n(t, y_1, y_2, \cdots, y_n)
\]

• The solution of such a system requires that \(n\) initial conditions be known at the starting value of \(t\).
Solution Methods

• Single-equation methods can be used to solve systems of ODE’s as well; for example, Euler’s method can be used on systems of equations - the one-step method is applied for every equation at each step before proceeding to the next step.

• Fourth-order Runge-Kutta methods can also be used, but care must be taken in calculating the k’s.
MATLAB RK4 Code

function [tp,yp] = rk4sys(dydt,tspan,y0,h,varargin)
% rk4sys: fourth-order Runge-Kutta for a system of ODEs
% [t,y] = rk4sys(dydt,tspan,y0,h,p1,p2,...): integrates
% a system of ODEs with fourth-order RK method
% input:
% dydt = name of the M-file that evaluates the ODEs
% tspan = [ti, tf]; initial and final times with output
% generated at interval of h, or
% = [t0 t1 ... tf]; specific times where solution output
% y0 = initial values of dependent variables
% h = step size
% p1,p2,... = additional parameters used by dydt
% output:
% tp = vector of independent variable
% yp = vector of solution for dependent variables

if nargin<4,error('at least 4 input arguments required'), end
if any(diff(tspan)<=0),error('tspan not ascending order'), end
n = length(tspan);
ti = tspan(1);tf = tspan(n);
if n == 2
 t = (ti:h:tf)'; n = length(t);
 if t(n)<tf
 t(n+1) = tf;
 n = n+1;
 end
else
 t = tspan;
end
tt = ti; y(i,:) = y0;
np = 1; tp(np) = tt; yp(np,:) = y(i,:);
i=1;
while(1)
tend = t(np+1);
 hh = t(np+1) - t(np);
if hh=h, hh = h;end
 while(1)
 if tt+hh>tend, hh = tend-tt; end
 k1 = dydt(tt,y(i,:),varargin{:})';
 ymid = y(i,:) + k1.*hh/2;
 k2 = dydt(tt+hh/2,ymid,varargin{:})';
 ymid = y(i,:) + k2*hh/2;
 k3 = dydt(tt+hh/2,ymid,varargin{:})';
 yend = y(i,:) + k3*hh;
 k4 = dydt(tt+hh,yend,varargin{:})';
 phi = (k1+2*(k2+k3)+k4)/6;
 y(i+1,:) = y(i,:) + phi*hh;
 tt = tt+hh;
 i=i+1;
 if tt>=tend,break,end
 np = np+1; tp(np) = tt; yp(np,:) = y(i,:);
if tt>=tf,break,end
end